1,360 research outputs found

    Neuroimaging in Functional Movement Disorders.

    Get PDF
    PURPOSE OF REVIEW: Functional movement disorders are common and disabling causes of abnormal movement control. Here, we review the current state of the evidence on the use of neuroimaging in Functional movement disorders, particularly its role in helping to unravel the pathophysiology of this enigmatic condition. RECENT FINDINGS: In recent years, there has been a shift in thinking about functional movement disorder, away from a focus on high-level psychological precipitants as in Freudian conversion theories, or even an implicit belief they are 'put-on' for secondary gain. New research has emphasised novel neurobiological models incorporating emotional processing, self-representation and agency. Neuroimaging has provided new insights into functional movement disorders, supporting emerging neurobiological theories implicating dysfunctional emotional processing, self-image and sense of agency. Recent studies have also found subtle structural brain changes in patients with functional disorders, arguing against a strict functional/structural dichotomy

    Unplugging the Universe: the neglected electromagnetic consequence of decoupling

    Full text link
    This letter concentrates on the non-equilibrium evolution of magnetic field structures at the onset of recombination, when the charged particle current densities decay as neutrals are formed. We consider the effect that a decaying magnetic flux has on the acceleration of particles via the transient induced electric field. Since the residual charged-particle number density is small as a result of decoupling, we shall consider the magnetic and electric fields essentially to be imposed, neglecting the feedback from any minority accelerated population. We find that the electromagnetic treatment of this phase transition can produce energetic electrons scattered throughout the Universe. Such particles could have a significant effect on cosmic evolution in several ways: (i) their presence could delay the effective end of the recombination era; (ii) they could give rise to plasma concentrations that could enhance early gravitational collapse of matter by opposing cosmic expansion to a greater degree than neutral matter could; (iii) they could continue to be accelerated, and become the seed for reionisation at the later epoch z10z \approx 10.Comment: 4 pages, no figure

    Pautas abiertas por la Encíclica 'Redemptoris Mater' para la celebración del Año Mariano

    Get PDF

    Joaquín Rey legítimo de Juda en el destierro

    Get PDF

    Comentario de San Jerónimo al libro de Daniel. Las profecías sobre el Cristo y el anticristo

    Get PDF

    Detection of the compressed primary stellar wind in eta Carinae

    Get PDF
    A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.Comment: Accepted for publication in the Astrophysical Journal Letter

    Historia y doctrina en el libro de Daniel

    Get PDF

    Scene-adapted plug-and-play algorithm with convergence guarantees

    Full text link
    Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem
    corecore